skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ray, Subhrodeep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Membrane-based acoustic metamaterials have been reported to achieve 100% absorption, the acoustic analogue of photonic black-hole. However, the bandwidth is usually very narrow around some local resonance frequency, which limits its practical use. To address this limitation and achieve a broadband absorption, this paper first establishes a theoretical framework for unit cells of air-backed diaphragms, modeled as an equivalent mass-spring-dashpot system. Based on the impedance match principle, three different approaches are numerically investigated by tuning the cavity length, the static pressure in the cavity, and the effective damping of perforated plates. A prototype with polyimide diaphragm and 3D printed substrate is then fabricated and characterized using an acoustic impedance tube. Preliminary experiments show the feasibility to achieve an absorption bandwidth of ∼200 Hz at center frequency of 1.45 kHz. This work pays the way for developing a sub-wavelength light weight broadband acoustic absorber for a variety of applications in noise control. 
    more » « less
  2. Abstract There is a great interest in low-cost, versatile microfluidic platforms of which the fabrication processes are rapid, straightforward, and translatable to industrial mass productions. In addition, it is beneficial for microfluidic devices to be reconfigurable in the field, so that multiple functions can be realized by a minimum number of devices. Here, we present a versatile acrylic-tape platform which allows highly accessible rapid prototyping of microfluidic devices, as well as device reconfiguration to realize different functions. The clean-room-free fabrication and sealing process only requires a laser cutter, acrylic, and tapes and can be done by an untrained person in the field. We experimentally characterized the relationship between the capillary flow speed and the channel height, the latter of which can be well controlled by the fabrication process. Reconfiguration of microfluidic functions was demonstrated on a single acrylic-tape device, thanks to the reversible sealing enabled by functional tapes. Different pumping mechanisms, including on-chip pumps for better portability and syringe pumps for precise fluid control, have been employed for the demonstration of two-phase flow and droplet generation, respectively. The low-cost and versatile acrylic-tape microfluidic devices are promising tools for applications in a wide range of fields, especially for point-of-care biomedical and clinical applications. 
    more » « less